skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Unruh, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The marriage of quantum optics and general relativity has produced interesting and even surprising results in recent times. 
    more » « less
    Free, publicly-accessible full text available July 28, 2026
  2. Minkowski vacuum is empty from the perspective of Unruh-Minkowski photons, however, in the Rindler picture, it is filled with entangled pairs of Rindler photons. A ground-state atom uniformly accelerated through Minkowski vacuum can become excited by absorbing a Rindler photon (Unruh effect) or, in the alternative description, by emitting an Unruh-Minkowski photon (Unruh-Wald effect). We find an exact solution for the quantum evolution of a long chain of harmonic oscillators accelerated through Minkowski vacuum and for two chains accelerated in the opposite directions. We show how entanglement of Rindler photons present in Minkowski vacuum is transferred to the oscillators moving in causally disconnected regions. We also show that in the Unruh-Minkowski photon picture the process can be interpreted as if initial correlations between collective oscillator modes are transferred to the generated Unruh-Minkowski photons. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. null (Ed.)
  4. null (Ed.)